
Prescient
Release 2.2.2

Prescient Developers

Apr 04, 2023

CONTENTS:

1 Using Prescient 3
1.1 Installation . 3
1.2 Running Prescient . 5
1.3 Configuration Options . 8
1.4 Input Data . 14
1.5 Results and Statistics Output . 14
1.6 Customizing Prescient with Plugins . 14

2 Modeling Concepts 15
2.1 The Prescient Simulation Cycle . 15
2.2 Time Series Data Streams . 17
2.3 Reserves and Ancillary Services . 18
2.4 Energy Markets and Pricing . 18

3 Examples and Tutorials 19

4 Reference 21
4.1 Input Data . 21
4.2 Python Classes and Functions . 35

5 Indices and tables 37

i

ii

Prescient, Release 2.2.2

Prescient is a python library that provides production cost modeling capabilities for power generation and distribution
networks.

CONTENTS: 1

Prescient, Release 2.2.2

2 CONTENTS:

CHAPTER

ONE

USING PRESCIENT

1.1 Installation

The Prescient python package can be installed using pip, or it can be installed from source. Python and a linear solver
are prerequisites for either installation method.

To install Prescient, follow these steps:

• Install python

• Install a linear solver

• Install Using Pip

• Install From Source

– Get Prescient source code

– Install Python Dependencies

– Install Egret

– Install the Prescient python package

– Verify your installation

1.1.1 Install python

Prescient requires python 3.7 or later. We recommend installing Anaconda to manage python and other dependencies.

1.1.2 Install a linear solver

Prescient requires a mixed-integer linear programming (MILP) solver that is compatible with Pyomo. Options include
open source solvers such as CBC or GLPK, and commercial solvers such as CPLEX, Gurobi, or Xpress.

The specific mechanics of installing a solver is specific to the solver and/or the platform. An easy way to install an open
source solver on Linux and Mac is to install the CBC Anaconda package into the current conda environment:

conda install -c conda-forge coincbc

Tip: Be sure to activate the correct python environment before running the command above.

3

https://www.anaconda.com
https://pyomo.readthedocs.io

Prescient, Release 2.2.2

Binaries for Windows and other platforms may be available from https://github.com/coin-or/Cbc/releases.

Note that the CBC solver is used in most Prescient tests, so you may want to install it even if you intend to use another
solver in your own runs.

1.1.3 Install Using Pip

Prescient is available as a python package that can be installed using pip. To install the latest release of Prescient use
the following command:

pip install gridx-prescient

Be sure the intended python environment is active before issuing the command above.

1.1.4 Install From Source

You may want to install from source if you want to use the latest pre-release version of the code, or if you want to
modify/contribute to the code yourself. The steps required to install Prescient from source are described below:

Get Prescient source code

The latest version of Prescient can be acquired as source from the Prescient github project, either by downloading a zip
file of the source code or by cloning the main branch of the github repository.

Install Python Dependencies

The python environment where you run Prescient must include a number of prerequisites. You may want to create a
python environment specifically for Prescient. To create a new Anaconda environment and install Prescient’s prereq-
uisites into the new environment, issue the following command from the root folder of the Prescient source code:

conda env create -f environment.yml

The command above will create an environment named prescient. To use a different name for the environment, add the
-n option to the command above:

conda env create -n nameOfYourChoice -f environment.yml

Once you have create the new environment, make it the active environment:

conda activate prescient

If you are using something other than Anaconda to manage your python environment, use the information in environ-
ment.yml to identify which packages to install.

4 Chapter 1. Using Prescient

https://github.com/coin-or/Cbc/releases
https://github.com/grid-parity-exchange/Prescient

Prescient, Release 2.2.2

Install Egret

When installing Prescient from the latest version of the source code, Egret may need to be installed manually because
pre-release versions of Prescient sometimes depend on pre-release versions of EGRET. Install EGRET from source
according to the instructions here <https://github.com/grid-parity-exchange/Egret/blob/main/README.md>.

Install the Prescient python package

The steps above configure a python environment with Prescient’s prerequisites. Now we must install Prescient itself.
From the prescient python environment, issue the following command:

pip install -e .

This will update the active python environment to include Prescient’s source code. Any changes to Prescient source
code will take affect each time Prescient is run.

This command will also install a few utilities that Prescient users may find useful, including runner.py (see Running
Prescient).

Verify your installation

Prescient is packaged with tests to verify it has been set up correctly. To execute the tests, issue the following command:

pytest -v prescient/simulator/tests/test_simulator.py

This command runs the tests using the CBC solver and will fail if you haven’t installed CBC. The tests can take as long
as 30 minutes to run, depending on your machine. If Prescient was installed correctly then all tests should pass.

1.2 Running Prescient

There are three ways to launch and run Prescient:

• With a configuration file, using runner.py

• With command line options, using the prescient.simulator module

• From python code, using in-code configuration

In all three cases, the analyst supplies configuration values that identify input data and dictate which options to use
during the Prescient simulation. Configuration options can be specified in a configuration file, on the command line,
in-code, or a combination of these methods, depending on how Prescient is launched.

To see what configuration options are available, see Configuration Options.

1.2. Running Prescient 5

Prescient, Release 2.2.2

1.2.1 Launch with runner.py

Prescient can be run using runner.py, a utility which is installed along with Prescient (see Install Egret). Before exe-
cuting runner.py, you must create a configuration file indicating how Prescient should be run. Here is an example of a
configuration file that can be used with runner.py:

command/exec simulator.py
--data-directory=example_scenario_input
--output-directory=example_scenario_output
--input-format=rts-gmlc
--run-sced-with-persistent-forecast-errors
--start-date=07-11-2024
--num-days=7
--sced-horizon=1
--sced-frequency-minutes=10
--ruc-horizon=36

Because runner.py can potentially be used for more than launching Prescient, the first line of the configuration file must
match the line shown in the example above. Otherwise runner.py won’t know that you intend to run Prescient.

All subsequent lines set the value of a configuration option. Configuration options are described in Configuration
Options.

Once you have the configuration file prepared, you can launch Prescient using the following command:

runner.py config.txt

where config.txt should be replaced with the name of your configuration file.

1.2.2 Launch with the prescient.simulator module

Another way to run Prescient is to execute the prescient.simulator module:

python -m prescient.simulator <options>

where options specifies the configuration options for the run. An example might be something like this:

python -m prescient.simulator --data-directory=example_scenario_input --output-
→˓directory=example_scenario_output --input-format=rts-gmlc --run-sced-with-persistent-
→˓forecast-errors --start-date=07-11-2024 --num-days=7 --sced-horizon=1 --sced-frequency-
→˓minutes=10 --ruc-horizon=36

Configuration options can also be specified in a configuration file:

python -m prescient.simulator --config-file=config.txt

You can combine the –config-file option with other command line options. The contents of the configuration file are
effectively inserted into the command line at the location of the –config-file option. You can override values in a
configuration file by repeating the option at some point after the –config-file option.

Running the prescient.simulator module allows you to run Prescient without explicitly installing it, as long as Prescient
is found in the python module search path.

6 Chapter 1. Using Prescient

Prescient, Release 2.2.2

1.2.3 Running Prescient from python code

Prescient can be configured and launched from python code:

from prescient.simulator import Prescient

Prescient().simulate(
data_path='deterministic_scenarios',
simulate_out_of_sample=True,
run_sced_with_persistent_forecast_errors=True,
output_directory='deterministic_simulation_output',
start_date='07-10-2020',
num_days=7,
sced_horizon=4,
reserve_factor=0.0,
deterministic_ruc_solver='cbc',
sced_solver='cbc',
sced_frequency_minutes=60,
ruc_horizon=36,
enforce_sced_shutdown_ramprate=True,
no_startup_shutdown_curves=True)

The code example above creates an instance of the Prescient class and passes configuration options to its simulate()
method. An alternative is to set values on a configuration object, and then run the simulation after configuration is
done:

from prescient.simulator import Prescient

p = Prescient()

config = p.config
config.data_path='deterministic_scenarios'
config.simulate_out_of_sample=True
config.run_sced_with_persistent_forecast_errors=True
config.output_directory='deterministic_simulation_output'
config.start_date='07-10-2020'
config.num_days=7
config.sced_horizon=4
config.reserve_factor=0.0
config.deterministic_ruc_solver='cbc'
config.sced_solver='cbc'
config.sced_frequency_minutes=60
config.ruc_horizon=36
config.enforce_sced_shutdown_ramprate=True
config.no_startup_shutdown_curves=True

p.simulate()

A third option is to store configuration values in a dict, which can potentially be shared among multiple runs:

from prescient.simulator import Prescient

options = {
'data_path':'deterministic_scenarios',

(continues on next page)

1.2. Running Prescient 7

Prescient, Release 2.2.2

(continued from previous page)

'simulate_out_of_sample':True,
'run_sced_with_persistent_forecast_errors':True,
'output_directory':'deterministic_simulation_output'

}

Prescient().simulate(**options)

These three methods can be used together quite flexibly. The example below demonstrates a combination of approaches
to configuring a prescient run:

from prescient.simulator import Prescient

simulator = Prescient()

Set some configuration options using the simulator's config object
config = simulator.config
config.data_path='deterministic_scenarios'
config.simulate_out_of_sample=True
config.run_sced_with_persistent_forecast_errors=True
config.output_directory='deterministic_simulation_output'

Others will be stored in a dictionary that can
potentially be shared among multiple prescient runs
options = {

'start_date':'07-10-2020',
'sced_horizon':4,
'reserve_factor':0.0,
'deterministic_ruc_solver':'cbc',
'sced_solver':'cbc',
'sced_frequency_minutes':60,
'ruc_horizon':36,
'enforce_sced_shutdown_ramprate':True,
'no_startup_shutdown_curves':True,

}

And finally, pass the dictionary to the simulate() method,
along with an additional function argument.
simulator.simulate(**options, num_days=7)

1.3 Configuration Options

• Overview

• Option Data Types

• List of Configuration Options

8 Chapter 1. Using Prescient

Prescient, Release 2.2.2

1.3.1 Overview

Prescient configuration options are used to indicate how the Prescient simulation should be run. Configuration options
can be specified on the command line, in a text configuration file, or in code, depending on how Prescient is launched
(see Running Prescient).

Each configuration option has a name, a data type, and a default value. The name used on the command line and
the name used in code vary slightly. For example, the number of days to simulate is specified as --num-days on the
command line, and num_days in code.

1.3.2 Option Data Types

Most options use self-explanatory data types like String, Integer, and Float, but some data types require more expla-
nation and may be specified in code in ways that are unavailable on the command line:

Table 1: Configuration Data Types
Data type Command-line/config file usage In-code usage
Path A text string that refers to a file or

folder. Can be relative or absolute,
and may include special characters
such as ~.

Same as command-line

Date A string that can be converted to a
date, such as 1776-07-04.

Either a string or a datetime object.

Flag Simply include the option to set it to
true. For example, the command be-
low sets simulate_out_of_sample to
true:
runner.py --simulate-out-
→˓of-sample

Set the option by assigning True or
False:
config.simulate_out_of_
→˓sample = True

Module Refer to a python module in one of
the following ways:

• The name of a python
module (such as pre-
scient.simulator.prescient)

• The path to a python
file (such as pre-
scient/simulator/prescient.py)

In addition to the two string options
available to the command-line, code
may also use a python module ob-
ject. For example:

import my_custom_data_
→˓provider
config.data_provider = my_
→˓custom_data_provider

1.3.3 List of Configuration Options

The table below describes all available configuration options.

1.3. Configuration Options 9

Prescient, Release 2.2.2

Table 2: Configuration Options
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--config-file config_file Path. Default=None. Path to a file holding configuration
options. Can be absolute or rela-
tive. Cannot be set in code directly
on a configuration object, but can
be passed to a configuration object’s
parse_args() function:

p = Prescient()
p.config.parse_args(["--
→˓config-file", "my-config.
→˓txt"])

See Launch with runner.py for a de-
scription of configuration file syntax.

General Options
--start-date start_date Date. Default=2020-01-

01.
The start date for the simulation.

--num-days num_days Integer. Default=7 The number of days to simulate.
Data Options
--data-path
or
--data-directory

data_path Path. Default=input_data. Path to a file or folder where input data
is located. Whether it should be a file
or a folder depends on the input for-
mat. See Input Data.

--input-format input_format String. Default=dat. The format of the input data. Valid
values are dat and rts_gmlc. Ignored
when using a custom data provider.
See Input Data.

--data-provider data_provider Module. Default=No cus-
tom data provider.

A python module with a custom data
provider that will supply data to Pre-
scient during the simulation. Don’t
specify this option unless you are
using a custom data provider; use
data_path and input_format instead.
See Custom Data Providers.

--output-directory output_directory Path. Default=outdir. The path to the root directory to which
all generated simulation output files
and associated data are written.

RUC Options
--ruc_every-hours ruc_every_hours Integer. Default=24 How often a RUC is executed, in

hours. Default is 24. Must be a divisor
of 24.

--ruc-execution-
hour

ruc_execution_hour Integer. Default=16 Specifies an hour of the day the
RUC process is executed. If multiple
RUCs are executed each day (because
ruc_every_hours is less than 24), any
of the execution times may be spec-
ified. Negative values indicate hours
before midnight, positive after.

--ruc-horizon ruc_horizon Integer. Default=48 The number of hours to include in each
RUC. Must be >= ruc_every_hours
and <= 48.

continues on next page

10 Chapter 1. Using Prescient

Prescient, Release 2.2.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--ruc-prescience-
hour

ruc_prescience_hour Integer. Default=0. The number of initial hours of each
RUC in which linear blending of fore-
casts and actual values is done, mak-
ing some near-term forecasts more ac-
curate.

--run-ruc-with-next-
day-data

run_ruc_with_next_day_dataFlag. Default=false. If false (the default), never use more
than 24 hours of forecast data even
if the RUC horizon is longer than 24
hours. Instead, infer values beyond 24
hours.
If true, use forecast data for the full
RUC horizon.

--simulate-out-of-
sample

simu-
late_out_of_sample

Flag. Default=false. If false, use forecast input data as both
forecasts and actual values; the actual
value input data is ignored.
If true, values for the current sim-
ulation time are taken from the ac-
tual value input, and actual values
are used to blend near-term values if
ruc_prescience_hour is non-zero.

--ruc-network-type ruc_network_type String. Default=ptdf. Specifies how the network is repre-
sented in RUC models. Choices are: *
ptdf – power transfer distribution fac-
tor representation * btheta – b-theta
representation

--ruc-slack-type ruc_slack_type String. Default=every-
bus.

Specifies the type of slack variables
to use in the RUC model formulation.
Choices are: * every-bus – slack vari-
ables at every system bus * ref-bus-
and-branches – slack variables at only
reference bus and each system branch

--deterministic-ruc-
solver

determinis-
tic_ruc_solver

String. Default=cbc. The name of the solver to use for
RUCs.

--deterministic-ruc-
solver-options

determinis-
tic_ruc_solver_options

String. Default=None. Solver options applied to all RUC
solves.

--ruc-mipgap ruc_mipgap Float. Default=0.01. The mipgap for all deterministic RUC
solves.

--output-ruc-initial-
conditions

out-
put_ruc_initial_conditions

Flag. Default=false. Print initial conditions to stdout prior
to each RUC solve.

--output-ruc-
solutions

out-
put_ruc_solutions

Flag. Default=false. Print RUC solution to stdout after each
RUC solve.

--write-
deterministic-
ruc-instances

write_deterministic_ruc_instancesFlag. Default=false. Save each individual RUC model to a
file. The date and time the RUC was
executed is indicated in the file name.

continues on next page

1.3. Configuration Options 11

Prescient, Release 2.2.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--deterministic-ruc-
solver-plugin

determinis-
tic_ruc_solver_plugin

Module. Default=None. If the user has an alternative method
to solve RUCs, it should be specified
here, e.g., my_special_plugin.py.

Note: This option is ignored if --
simulator-plugin is used.

SCED Options
--sced-frequency-

minutes
sced_frequency_minutesInteger. Default=60. How often a SCED will be run, in min-

utes. Must divide evenly into 60, or be
a multiple of 60.

--sced-horizon sced_horizon Integer. Default=1 The number of time periods to include
in each SCED. Must be at least 1.

--run-sced-with-
persistent-forecast-
errors

run_sced_with_persistent_forecast_errorsFlag. Default=false. If true, then values in SCEDs use per-
sistent forecast errors. If false, all val-
ues in SCEDs use actual values for all
time periods, including future time pe-
riods. See Forecast Smoothing.

--enforce-sced-
shutdown-ramprate

en-
force_sced_shutdown_ramprate

Flag. Default=false. Enforces shutdown ramp-rate con-
straints in the SCED. Enabling this
option requires a long SCED look-
ahead (at least an hour) to ensure the
shutdown ramp-rate constraints can be
statisfied.

--sced-network-type sced_network_type String. Default=ptdf. Specifies how the network is repre-
sented in SCED models. Choices are:
* ptdf – power transfer distribution
factor representation * btheta – b-theta
representation

--sced-slack-type sced_slack_type String. Default=every-
bus.

Specifies the type of slack variables
to use in SCED models. Choices are:
* every-bus – slack variables at every
system bus * ref-bus-and-branches –
slack variables at only reference bus
and each system branch

--sced-solver sced_solver String. Default=cbc. The name of the solver to use for
SCEDs.

--sced-solver-
options

sced_solver_options String. Default=None. Solver options applied to all SCED
solves.

--print-sced print_sced Flag. Default=false. Print results from SCED solves to std-
out.

--output-sced-
initial-conditions

out-
put_sced_initial_conditions

Flag. Default=false. Print SCED initial conditions to stdout
prior to each solve.

--output-sced-loads output_sced_loads Flag. Default=false. Print SCED loads to stdout prior to
each solve.

--write-sced-
instances

write_sced_instances Flag. Default=false. Save each individual SCED model to a
file. The date and time the SCED was
executed is indicated in the file name.

continues on next page

12 Chapter 1. Using Prescient

Prescient, Release 2.2.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

Output Options
--disable-
stackgraphs

disable_stackgraphs Flag. Default=false. Disable stackgraph generation.

--output-max-
decimal-places

out-
put_max_decimal_places

Integer. Default=6. The number of decimal places to out-
put to summary files. Output is
rounded to the specified accuracy.

--output-solver-logs output_solver_logs Flag. Default=false. Whether to print solver logs to stdout
during execution.

Miscellaneous Op-
tions
--reserve-factor reserve_factor Float. Default=0.0. The reserve factor, expressed as a con-

stant fraction of demand, for spinning
reserves at each time period of the sim-
ulation. Applies to both RUC and
SCED models.

--no-startup-
shutdown-curves

no_startup_shutdown_curvesFlag. Default=False. If true, then do not infer
startup/shutdown ramping curves
when starting-up and shutting-down
thermal generators.

--symbolic-solver-
labels

sym-
bolic_solver_labels

Flag. Default=False. Whether to use symbol names derived
from the model when interfacing with
the solver.

--enable-quick-
start-generator-
commitment

en-
able_quick_start_generator_commitment

Flag. Default=False. Whether to allow quick start genera-
tors to be committed if load shedding
would otherwise occur.

Market and Pric-
ing Options

--compute-market-
settlements

com-
pute_market_settlements

Flag. Default=False. Whether to solve a day-ahead market
as well as real-time market and re-
port the daily profit for each generator
based on the computed prices.

--day-ahead-pricing day_ahead_pricing String. Default=aCHP. The pricing mechanism to use for the
day-ahead market. Choices are: *
LMP – locational marginal price *
ELMP – enhanced locational marginal
price * aCHP – approximated convex
hull price.

--price-threshold price_threshold Float. Default=10000.0. Maximum possible value the price can
take. If the price exceeds this value
due to Load Mismatch, then it is set
to this value.

--reserve-price-
threshold

re-
serve_price_threshold

Float. Default=10000.0. Maximum possible value the reserve
price can take. If the reserve price ex-
ceeds this value, then it is set to this
value.

Plugin Options
continues on next page

1.3. Configuration Options 13

Prescient, Release 2.2.2

Table 2 – continued from previous page
Command-line
Option

In-Code Configu-
ration Property

Argument Description

--plugin plugin Module. Default=None. Python plugins are analyst-provided
code that Prescient calls at various
points in the simulation process. See
Customizing Prescient with Plugins
for details.
After Prescient has been initialized,
the configuration object’s plugin prop-
erty holds plugin-specific setting val-
ues.

--simulator-plugin simulator_plugin Module. Default=None. A module that implements the engine
interface. Use this option to replace
methods that setup and solve RUC and
SCED models with custom implemen-
tations.

1.4 Input Data

1.4.1 Custom Data Providers

1.5 Results and Statistics Output

Under Construction

Documentation coming soon

1.6 Customizing Prescient with Plugins

Under Construction

Documentation coming soon

14 Chapter 1. Using Prescient

CHAPTER

TWO

MODELING CONCEPTS

2.1 The Prescient Simulation Cycle

Prescient simulates the operation of a power generation network throughout a study horizon, finding the set of opera-

15

Prescient, Release 2.2.2

tional choices that satisfy demand at the lowest possible cost.

A Prescient simulation consists of two repeating cycles, one nested in the other. The outer cycle is the Reliability
Unit Commitment (RUC) planning cycle, which schedules changes in dispatchable generators’ online status during the
cycle’s period. The inner, more frequent cycle is the Security Constrained Economic Dispatch (SCED) cycle, which
determines dispatch levels for dispatchable generators.

2.1.1 The RUC Cycle

The RUC cycle periodically generates a RUC plan. A RUC plan consists of two types of data: a unit commitment
schedule and optionally a pricing schedule (when compute-market-settlements is True). The unit commitment schedule
indicates which dispatchable generators should be activated or deactivated during upcoming time periods. The pricing
schedule sets the contract price for expected power delivery and for reserves (ancillary service products). The RUC
plan reflects the least expensive way to satisfy predicted loads while honoring system constraints.

A new RUC plan is generated at regular intervals, at least once per day. A new RUC plan always goes into effect at
midnight of each day. If more than one RUC plan is generated each day, then additional RUC plans take effect at equally
spaced intervals. For example, if 3 RUC plans are generated each day, then one will go into effect at midnight, one at
8:00 a.m., and one at 4:00 p.m. Each RUC plan covers the time period that starts when it goes into effect and ends just
as the next RUC plan becomes active.

A RUC plan is based on the current state of the system at the time the plan is generated (particularly the current
dispatch and up- or down-time for dispatchable generators), and on forecasts for a number of upcoming time periods.
The forecasts considered when forming a RUC plan must extend at least to the end of the RUC’s planning period, but
typically extend further into the future in order to avoid poor choices at the end of the plan (“end effects”). The amount
of time to consider when generating a RUC plan is known as the RUC horizon. A commonly used RUC horizon is 48
hours.

The simulation can be configured to generate RUC plans some number of hours before they take effect. This is done
by specifying a time of day for one of the plans to be generated. The gap between the specified generation time and the
next time a RUC plan is scheduled to take effect is called the RUC gap. Each RUC plan still covers the expected time
period, from the time the plan takes effect until the next RUC plan takes effect, but its decisions will be based on what
is known at the time the RUC plan is generated.

2.1.2 The SCED Cycle

The SCED process selects dispatch levels for all active dispatchable generators in the current simulation time period.
Dispatch levels are determined using a process that is very similar to that used to build a RUC plan. The current state
of the system, together with forecasts for a number of future time periods, are examined to select dispatch levels that
satisfy current loads and forecasted future loads at the lowest possible cost.

The SCED cycle is more frequent than the RUC cycle, with new dispatch levels selected at least once an hour. The SCED
honors unit commitment decisions made in the RUC plan; whether each generator is committed or not is dictatated by
the RUC schedule currently in effect.

Costs are also determined with each SCED, based on dispatchable generation selected by the SCED process, the com-
mitment and start-up costs as selected by the associated RUC process, as well as current actual demands and non-
dispatchable generation levels.

16 Chapter 2. Modeling Concepts

Prescient, Release 2.2.2

2.2 Time Series Data Streams

Prescient uses time series data from two data streams, the real-time stream (i.e., actuals) and the forecast stream. As
their names imply, the real-time stream includes data that the simulation should treat as actual values that occur at
specific times in the simulation, and the forecast stream includes forecasts for time periods that have not yet occured in
the simulation.

Both streams consist of time-stamped values for loads and non-dispatchable generation data.

2.2.1 Real-Time Data (Actuals)

The real-time data stream provides data that the simulation should treat as actual values. Real-time values are typically
used only when the simulation reaches the corresponding simulation time.

Real-time data can be provided at any time interval. The real-time data interval generally matches the SCED interval
(see sced-frequency-minutes), but this is not a requirement. If the SCED interval does not match the real-time interval
then real-time data will be interpolated or discarded as needed to match the SCED interval.

2.2.2 Forecasts

Forecast data are provided by the forecast data stream. The frequency of data provided through the forecast stream must
be hourly.

New forecasts are retrieved each time a new RUC plan is generated. The forecasts retrieved in a given batch are those
required to satisfy the RUC horizon (see ruc-horizon), starting with the RUC activation time.

Forecast Smoothing

As forecasts are retrieved from the forecast data stream, they may be adjusted so that near-term forecasts are more
accurate than forecasts further into the future. This serves two purposes: first, to avoid large jumps in timeseries values
due to inaccurate forecasts; and second, to model how forecasts become more accurate as their time approaches.

The number of forecasts to be smoothed is determined by the ruc-prescience-hour configuration option. Values for
the current simulation time are set equal to their actual value, ignoring data read from the forecast stream. Values for
ruc-prescience-hour hours after the current simulation time are set equal to data read from the forecast stream.
Between these two times, values are a weighted average of the values provided by the actuals and forecast data streams.
The weights vary linearly with where the time falls between the current time and the ruc prescience hour. For example,
if ruc-prescience-hour is 8, then the adjusted forecast for 2 hours after the current simulation time will be 0.
25*forecast + 0.75*actual.

Note that blending weights are determined relative to the current simulation time when the RUC is generated, not
relative to the time the RUC goes into effect.

2.2. Time Series Data Streams 17

Prescient, Release 2.2.2

Real-Time Forecast Adjustments

Forecasts are adjusted further each time a SCED is run. This is done by comparing the forecast for the current time
with the actual value for the current time. The ratio of these two values is calculated, then used as a scaling factor for
forecast values. For example, if the forecast for a value was 10% too high, all future forecasts for the same value are
reduced by 10%.

Note: If run-sced-with-persistent-forecast-errors is false, then SCEDs will use actual values for all time periods.
Forecasts will still be used for RUCs, but SCEDs will be based entirely on actual values, even for future time periods.

2.3 Reserves and Ancillary Services

2.4 Energy Markets and Pricing

18 Chapter 2. Modeling Concepts

CHAPTER

THREE

EXAMPLES AND TUTORIALS

19

Prescient, Release 2.2.2

20 Chapter 3. Examples and Tutorials

CHAPTER

FOUR

REFERENCE

4.1 Input Data

4.1.1 The CSV Input File Format

The system being modeled by Prescient is read from a set of CSV files. The CSV files and their format is based on
the RTS-GMLC format. Prescient uses only a subset of the columns present in RTS-GMLC format. This document
identifies the columns read by Prescient, their meaning, and how they are represented in the Egret model used by
Prescient at runtime. Any additional columns be present in the input are ignored.

There are six required CSV files and two optional CSV file. Timeseries data is stored in an additional set of files you
specify in timeseries_pointers.csv. Documentation for each of the files is found below:

Required Files

bus.csv

This file is used to define buses. Add one row for each bus in the system. Each row in the CSV file will cause a
bus dictionary object to be added to ['elements']['bus'] in the Egret model.

Each row with a non-zero MW Load and/or non-zero MVAR Load will also cause a load to be added to
['elements']['load'] in Egret, and each row with a non-zero MW Shunt G and/or non-zero MVAR Shunt B
will cause a shunt to be added to ['elements']['shunt'] in Egret.

21

https://github.com/GridMod/RTS-GMLC/blob/master/RTS_Data/SourceData/README.md

Prescient, Release 2.2.2

Table 1: bus.csv Columns
Column Name Description Egret
Bus ID A unique string identifier for the

bus. This string is used to refer to
this bus in other CSV files.

Not used by Egret except during
parsing of CSV files.

Bus Name A human-friendly unique string
for this bus.

Used as the bus name in Egret.
Data for this bus is stored
in a bus dictionary stored at
['elements']['bus'][<Bus
Name>].
This is also the name of the load,
if a load is added for the bus
(a load is added if MW Load
or MVAR Load is non-zero).
The load dictionary is stored at
['elements']['load'][<Bus
Name>].
This is also the name of the shunt,
if a shunt is added for the bus
(a bus is added if MW Shunt G
or MVAR Shunt G is non-zero).
The shunt dictionary is stored at
['elements']['shunt'][<Bus
Name>].

BaseKV The bus base voltage. Must be
non-zero positive.

Stored in the Egret bus dictionary
as base_kv.

Bus Type The type of bus. Can be one of the
following:

• PQ
• PV
• Ref

Stored in Egret bus dictionary as
matpower_bustype. The Ref
bus type is stored in Egret in all
lower case (ref).

MW Load Magnitude of the load on the bus. Stored in the Egret bus dictionary
as p_load. A non-zero value
causes a load to be added; see Bus
Loads.

MVAR Load Magnitude of the reactive load on
the bus.

Stored in the Egret bus dictionary
as q_load. A non-zero value
causes a load to be added; see Bus
Loads.

V Mag Voltage magnitude setpoint Stored in the Egret bus dictionary
as vm.

V Angle Voltage angle setpoint in degrees Stored in the Egret bus dictionary
as va. If the Bus Type is Ref, this
value must be 0.0.

Area The area the bus is in. Stored in the Egret bus dic-
tionary as area. An area
dictionary is added to the Egret
model for each unique area
mentioned in the file. The
Egret area dictionary is found at
['elements']['area'][<Area>].
See Areas.

Zone The zone the bus is in. Stored in the Egret bus dictionary
as zone.

MW Shunt G Optional. Stored in the shunt dictionary as
gs. See Shunts.

MVAR Shunt B Optional. Stored in the shunt dictionary as
bs. See Shunts.

va Reference bus angle. If the Bus
Type is Ref, va is required and
must be zero.

22 Chapter 4. Reference

Prescient, Release 2.2.2

Additional Bus Values

The following values are automatically added to the bus dictionary:

• v_min = 0.95

• v_max = 1.05

Bus Loads

If a bus has a non-zero MW Load or MVAR Load, a load dictionary is added to Egret at
['elements']['load'][<Bus Name>]. The load dictionary will have the following values taken from
bus.csv:

• bus = Bus Name

• p_load = MW Load

• q_load = MVAR Load

• area = Area

• zone = Zone

An additional property is automatically added, always with the same value:

• in_service = true

Loads can (and usually do) vary throughout the study horizon. Variable loads are defined using a timeseries (see
timeseries_pointers.csv).

Shunts

If a bus has a non-zero MW Shunt G or a non-zero MVAR Shunt B, a shunt dictionary is added to Egret at
['elements']['shunt'][<Bus Name>]. The shunt dictionary will have the following values taken from
bus.csv:

• bus = Bus Name

• gs = MW Shunt G

• bs = MVAR Shunt B

An additional property is automatically added, always with the same value:

• shunt_type = fixed

Areas

Each unique area mentioned in bus.csv leads to an area being created in the Egret model at
['elements']['area'][<Area>], using the area name as it appears in bus.csv.

4.1. Input Data 23

Prescient, Release 2.2.2

branch.csv

This file defines branches - flow pathways between pairs of buses - including lines and transformers. Add a
row for each branch in the system. Each row in the CSV file will cause a branch dictionary to be added to
['elements']['branch'] in the Egret model.

Table 2: ListTable
Col-
umn
Name

Description Egret

UID A unique string identi-
fier for the branch.

Used as the branch name in Egret. Data for this branch is stored in a
branch dictionary stored at ['elements']['branch'][<UID>].

From
Bus

The Bus ID of one end
of the branch

The Bus Name of the bus with the corresponding Bus ID, as entered in
bus.csv, is stored in the Egret branch dictionary as from_bus.

To Bus The Bus ID of the other
end of the branch

The Bus Name of the bus with the corresponding Bus ID, as entered in
bus.csv, is stored in the Egret branch dictionary as to_bus.

R Branch resistance p.u. Stored in Egret bus dictionary as resistance.
X Branch reactance p.u. Stored in the Egret bus dictionary as reactance.
B Charging susceptance

p.u.
Stored in the Egret bus dictionary as charging_susceptance.

Cont
Rating

Continuous flow limit
in MW

Stored in the Egret bus dictionary as rating_long_term. Optional.

LTE
Rating

Non-continuous long
term flow limit in MW

Stored in the Egret bus dictionary as rating_short_term. Optional.

STE
Rating

Short term flow limit in
MW

Stored in the Egret bus dictionary as rating_emergency. Optional.

Tr Ratio Transformer winding
ratio.

If non-zero, branch is treated as a transformer. If blank or zero, branch
is considered a line. See Lines and Transformers below.

Additional Branch Values

The following values are automatically added to every branch dictionary in the Egret model:

• in_service = true

• angle_diff_min = -90

• angle_diff_max = 90

• pf = null

• qf = null

• pt = null

• qt = null

24 Chapter 4. Reference

Prescient, Release 2.2.2

Lines and Transformers

Each branch is either a line or a transformer. The type of branch is determined by the Tr Ratio. If this field is
blank or zero, the branch is a line and the following property is added to the branch dictionary:

• branch_type = line

If the Tr Ratio is a non-zero value, the following properties are added to the branch dictionary:

• branch_type = transformer

• transformer_tap_ratio = Tr Ratio

• transformer_phase_shift = 0

gen.csv

This file is where generators are defined. Add one row for each generator in the model, including both thermal
and renewable generators.

4.1. Input Data 25

Prescient, Release 2.2.2

Table 3: gen.csv Columns
Column
Name

Description Egret

GEN UID A unique string identifier for
the generator.

Used as the branch name in Egret. Data for this
branch is stored in a generator dictionary stored at
['elements']['generator'][<GEN UID>].

Bus ID Bus ID of connecting bus The Bus Name of the bus with the matching Bus ID, as
entered in bus.csv, is stored in the Egret generator dic-
tionary as bus.

Unit Type The kind of generator Typically stored in unit_type. Has additional side ef-
fects. See Generator Types below.

Fuel The type of fuel used by the
generator

Stored in the generator dictionary as fuel

MW Inj Real power injection setpoint Stored in the generator dictionary as pg
MVAR Inj Reactive power injection set-

point
Stored in the generator dictionary as qg

PMin MW Minimum stable real power in-
jection

May be left blank. If present, stored in the generator dic-
tionary in multiple places: p_min, startup_capacity,
shutdown_capacity, and p_min_agc

PMax MW Maximum stable real power in-
jection

May be left blank. If present, stored in the generator dic-
tionary in multiple places: p_max and p_max_agc

QMin MVAR Minimum stable reactive power
injection

May be left blank. If present, stored in the generator dic-
tionary as q_min

QMax MVAR Maximum stable reactive
power injection

May be left blank. If present, stored in the generator dic-
tionary as q_max

Ramp Rate
MW/Min

Maximum ramp up and ramp
down rate

Thermal generators only. May be left blank. If present,
stored in the generator dictionary in multiple places:
ramp_q and ramp_agc

Output_pct_0
through Out-
put_pct_<N>

The fraction of PMax MW for
fuel curve point i (See Fuel
Curves below).

Thermal generators only. See Fuel Curves below.

HR_avg_0 Average heat rate between 0
and the first fuel curve point, in
BTU/kWh

Thermal generators only. See Fuel Curves below.

HR_incr_1
through
HR_incr_<N>

Additional heat rate between
fuel curve point i-1 and fuel
curve point i, in BTU/kWh.

Thermal generators only. See Fuel Curves below.

Fuel Price
$/MMBTU

Fuel price in Dollars per mil-
lion BTU

Thermal generators only. Stored in the generator dictio-
nary as fuel_cost.

Non Fuel Start
Cost $

Dollars expended each time the
generator starts up.

Thermal generators only. Stored in the generator dictio-
nary as non_fuel_startup_cost.

Min Down
Time Hr

Minimum off time required be-
fore unit restart

Thermal generators only. Stored in the generator dictio-
nary as min_down_time.

Min Up time
Hr

Minimum off time required be-
fore unit restart

Thermal generators only. Stored in the generator dictio-
nary as min_up_time.

Start Time
Cold Hr

Time since shutdown after
which a cold start is required

Thermal generators only. See Startup Curves below

Start Time
Warm Hr

Time since shutdown after
which a warm start is required

Thermal generators only. See Startup Curves below

Start Time Hot
Hr

Time since shutdown after
which a hot start is required

Thermal generators only. See Startup Curves below

Start Heat
Cold MBTU

Fuel required to startup from
cold

Thermal generators only. See Startup Curves below

Start Heat
Warm MBTU

Fuel required to startup from
warm

Thermal generators only. See Startup Curves below

Start Heat Hot
MBTU

Fuel required to startup from
hot

Thermal generators only. See Startup Curves below
26 Chapter 4. Reference

Prescient, Release 2.2.2

Additional Generator Values

The following values are automatically added to all generator dictionaries:

• in_service = true

• mbase = 100.0

• area = Area of the bus identified by Bus ID

• zone = Zone of the bus identified by Bus ID

If the generator is a thermal generator, these additional values are also added:

• agc_capable = true

• shutdown_cost = 0.0

• ramp_up_60min = 60 * ramp_q

• ramp_down_60min = 60 * ramp_q

Generator Types

The Unit Type column determines whether the generator will be treated as thermal or renewable, or if the gener-
ator will be skipped.

If the Unit Type is Storage or CSP, the generator is skipped and left out of the Egret model.

If the Unit Type is WIND, HYDRO, RTPV, or PV, then these values are set:

• generator_type = renewable

• unit_type = Unit Type

If the Unit Type is ROR, then these values are set:

• generator_type = renewable

• unit_type = HYDRO

For all other values of Unit Type, these properties are set:

• generator_type = thermal

• unit_type = Unit Type

Fuel Curves

Fuel curves describe the amount of fuel consumed by the generator when producing different levels of power. A
fuel curve is defined by a set of points, where each point identifies a power output rate and the amount of fuel
required to generate that amount of power.

Power output rates are defined by the Output_pct_<N> columns, such as Output_pct_0, Output_pct_1, and so
on. You can include any number of Output_pct_<N> columns, but they must be numbered sequentially (0, 1,
2, and so on, up to the desired number of fuel curve points). The value of each Output_pct_<N> column is a
fraction of the maximum real power output (PMax MW), ranging from 0 to 1. Values must be in ascending order:
Output_pct_1 must be greater than Output_pct_0, Output_pct_2 must be greater than Output_pct_1, and so on.

Corresponding fuel requirements are defined by the HR_avg_0 column (for fuel curve point 0) and by
HR_incr_<N> columns (for fuel curve points 1 and above). HR_avg_0 is the fuel required to achieve Out-
put_pct_0. HR_incr_1 is the amount of additional fuel (the fuel increment) required to achieve Output_pct_1,

4.1. Input Data 27

Prescient, Release 2.2.2

HR_incr_2 is the amount of additional fuel required to go from Output_pct_1 to Ouput_pct_2, and so on. The
fuel consumption curve is required to be convex above point 0; the slope of lines between fuel curve points must
increase as you move to the right. Values of HR_incr_* must be chosen to reflect this requirement.

Within each row, the number of non-blank HR_* columns must must match the number of non-blank Out-
put_pct_<N> columns. However, different rows can have different numbers of points in their fuel curves.
Columns beyond the number of points in the fuel curve should be left blank.

The diagram below shows an example of a fuel curve with 4 points. The output percentage increases along the X-
axis with each successive point. Fuel consumption values on the Y-axis are calculated by adding fuel increments
to the previous Y values. Note that the fuel consumption curve is convex above Output_pct_0.

Fuel curves are stored in the Egret generator dictionary as p_fuel. Values in the fuel curve are in MW (rather
than output percent) and MMBTU/hr (rather than BTU/kWh). Fuel costs are calculated by interpolating the fuel
curve for the current output rate, then multiplying by the fuel_cost.

28 Chapter 4. Reference

Prescient, Release 2.2.2

Startup Curves

Startup curves define the amount of fuel required to start a generator, based on how long it has been since the
generator was shut off.

• If the time since the generator was most recently shut down is less than either the Min Down Time Hr or
the Start Time Hot Hr, the generator cannot yet be restarted.

• If the time since shutdown is at least Min Down Time Hr and Start Time Hot Hr, but less than Start Time
Warm Hr, then the generator can do a hot start, consuming Start Heat Hot MMBTU.

• If the time since shutdown is at least Start Time Warm Hr, but less than Start Time Cold Hr, then the
generator can do a warm start, consuming Start Heat Warm MMBTU.

• If the time since shutodown is at least Start Time Cold Hr, then the generator can do a cold start, consuming
Start Heat Cold MMBTU.

reserves.csv

This file defines the reserve products to be included in the model. Reserve products impose requirements on
surplus generation capacity within a particular area under certain conditions. Each reserve product has a category
and an area. The reserve product’s category identifies the conditions under which its requirements apply, and its
area identifies the region where the requirements apply.

There are 5 supported reserve product categories. The table below shows the name of reserve product categories
on the left as they appear in CSV input files, and the corresponding name in Egret on the right.

Table 4: Reserve Product Categories
CSV Reserve Product Category Egret reserve product name
Spin_Up spinning_reserve_requirement
Reg_Up regulation_up_requirement
Reg_Down regulation_down_requirement
Flex_Up flexible_ramp_up_requirement
Flex_Down flexible_ramp_down_requirement

Each reserve product’s category and applicable area are embedded in its name, as <category>_R<area>. For
example, a spinning reserve requirement for an area named "Area 1" would be named "Spin_Up_RArea 1".

Table 5: reserves.csv Columns
Col-
umn
Name

Description Egret

Reserve
Product

The name of the reserve product, following the <cat-
egory>_R<area> naming convention.

Added to the area’s Egret dictionary as the
Egret reserve product name.

Re-
quire-
ment
(MW)

Magnitude of the reserve requirement. This value is
ignored if there is a timeseries associated with the
reserve product.

If honored, it is used as the value of the
Egret reserve product name entry in the
area’s dictionary.

4.1. Input Data 29

Prescient, Release 2.2.2

Reserve Requirement Magnitudes

The magnitude of each reserve requirement may be constant throughout the entire simulation, or it may change
as specified by a timeseries in timeseries_pointers.csv. If the magnitude is constant, enter it in this file as the
Requirement (MW). If it varies during the study period, associate a timeseries with the reserve product (see time-
series_pointers.csv). In this case, the magnitude entered in this file is discarded and is replaced with appropriate
timeseries values.

Applicability to RUCs and SCEDs

Each category of reserve product may be configured to apply to RUC plans, to SCED operations, or both. This
is designated in simulation_objects.csv. See that file’s documentation for details.

simulation_objects.csv

This file is used to enter data about the data set as a whole. Each row specifies a global parameter with two values,
one that applies to forecasts and another that applies to real-time data (actuals). The file has three columns:

Table 6: simulation_objects.csv Columns
Column Name Description
Simulation_Parameters Which global parameter is set by this row
DAY_AHEAD The row’s value for forecast data and/or RUC plans
REAL_TIME The row’s value as it applies to real-time data and/or SCED operations

The following values of Simulation_Parameter are supported:

30 Chapter 4. Reference

Prescient, Release 2.2.2

Table 7: Supported values of Simulation_Parameter in simula-
tion_objects.csv

Sim-
ula-
tion_Parameter

Re-
quired?

Parameter Description DAY_AHEAD REAL_TIME

Pe-
riod_Resolution

Yes The number of seconds between val-
ues in timeseries data files

The number of sec-
onds between values
in DAY_AHEAD time-
series data files

The number of sec-
onds between values in
REAL_TIME timeseries
data files

Date_FromYes The date and time of the first value in
each timeseries data file. Most rea-
sonable formats are accepted.

The date and time
of the first value in
each DAY_AHEAD
timeseries data file

The date and time
of the first value in
each REAL_TIME
timeseries data file

Date_To Yes The latest date and time for which we
have enough data in timeseries files
to formulate a RUC or SCED. Most
reasonable formats are accepted. See
Date_To Details below.

The latest date and
time for which we
have enough data in
DAY_AHEAD time-
series data files to
formulate a RUC

The latest date and
time for which we
have enough data in
REAL_TIME time-
series data files to
formulate a SCED

Look_Ahead_Periods_Per_StepYes The default number of look-ahead
periods to use in RUC or SCED for-
mulations

The default number
of look-ahead peri-
ods to use in RUC
formulations

The default number
of look-ahead peri-
ods to use in SCED
formulations

Look_Ahead_ResolutionYes The default number of seconds be-
tween each look-ahead period used
in RUC or SCED formulations. See
Look_Ahead_Resolution Details be-
low.

The default number of
seconds between each
look-ahead period in
RUC formulations

The default number of
seconds between each
look-ahead period in
SCED formulations
formulations

Re-
serve_Products

No Which reserve products to enforce
for RUC plans or SCED operations.
See Reserve_Products Details be-
low.

Which reserve products
to enforce for RUC plans

Which reserve products
to enforce for SCED op-
erations

Date_To Details

The value of Date_To identifies the latest time for which there is enough data to formulate or RUC
(for DAY_AHEAD) or SCED (for REAL_TIME), including look-ahead periods. This is not the date and
time of the final value in timeseries data files. Instead, the Date_To is Look_Ahead_Periods_Per_Step *
Look_Ahead_Resolution before the date and time of the final value in the timeseries data files.

For example, consider a data set with 24 look-ahead periods with a look-ahead resolution of 1 hour. If the final
value in a timeseries is for April 10th at midnight, then Date_To is April 9th at midnight, because that is the latest
time for which we have enough data to satisfy the 24 hour look-ahead requirement.

4.1. Input Data 31

Prescient, Release 2.2.2

Look_Ahead_Resolution Details

The Look_Ahead_Resolution parameter is used to determine the date and time of the final value in timeseries
data files, as described in Date_To Details. Despite its name, it is not used to specify the look-ahead resolution
used during simulation. The actual look-ahead resolution used during simulation is determined by configuration
parameters passed to Prescient. Prescient will interpolate the available data as necessary to honor the look-ahead
resolution specified in its configuration parameters.

Reserve_Products Details

Some categories of reserve products may apply to RUC formulations, while others may apply to SCED formula-
tions. This row allows you to configure which reserve product categories apply to each formulation type. Reserve
product categories listed in the DAY_AHEAD column impose their requirements on RUC formulations, and re-
serve product categories listed in the REAL_TIME column impose their requirements on SCED formulations.

Specify applicable reserve product categories as a comma-separated list. Only listed reserve product categories
will be imposed on corresponding formulations. Supported reserve products are Spin_Up, Reg_Up, Reg_Down,
Flex_Up, and Flex_Down.

This row is optional. If you leave the row out, all reserve categories apply to both RUCs and SCEDs.

Optional Files

timeseries_pointers.csv

This file identifies where to find timeseries values, and which model elements they apply to. Each row in the file
identifies a model element (such as a particular generator’s power output, or an area’s load), whether the values
are forecast or actual values, and what file holds the values. The CSV file has the following columns:

Table 8: timeseries_pointers.csv Columns
Column Name Description
Simulation Either DAY_AHEAD or REAL_TIME. If

DAY_AHEAD, the values are forecasts that in-
form RUC formulations. If REAL_TIME, the values
are actual values used in SCED formulations.

Category What kind of object the data is for. Supported values
are:

• Generator
• Area
• Reserve

Object The name of the specific object the data is for
Parameter The specific attribute of the object that the data is for
Data File The path to the file holding the timeseries values.

The model element the data applies to is identified by the Category, Object, and Parameter. Which parameters
are supported depend on the Category.

• If Category is Generator, then Object must be the name of a generator as specified in the GEN UID column
of gen.csv. Parameter must be either PMax MW or PMin MW.

• If Category is Area, then Object must be an area name referenced in bus.csv, and Parameter must be MW
Load. The timeseries values specify the load imposed on the area at each timestep.

32 Chapter 4. Reference

Prescient, Release 2.2.2

• If Category is Reserve, then Object is a reserve product name in <category>_R<area> format, and Pa-
rameter must be Requirement. The timeseries values specify the magnitude of the reserve requirement for
the reserve product.

The Data File is the path to the CSV file holding timeseries values. The path can be relative or absolute. If it is
relative, it is relative to the folder containing timeseries_pointers.csv.

Timeseries File Formats

There are two supported formats for timeseries files, columnar and 2D. A columnar file has a row for each value
in the timeseries, while a 2D file has a row for each day and a column for each value within the day. A columnar
file can have multiple data columns for each row, allowing data for multiple model elements to be stored in the
same file. A 2D file can only hold a single timeseries.

Both file formats store data at equally spaced time intervals. Each day is split into periods, numbered 1 through N.
The first period of each day starts at midnight. The duration of each period is specified by the Period_Resolution
row in simulation_objects.csv. The number of periods per day must add up to 24 hours per day. Note that
DAY_AHEAD periods and REAL_TIME periods often have different durations, so the appropriate the number of
periods per day may depend on whether the data are forecasts or actuals.

Each file’s data must cover the time period from DATE_FROM to DATE_TO, as specified in simula-
tion_objects.csv, including the extra look-ahead periods after DATE_TO.

Columnar Timeseries Files

A columnar timeseries file has one row per period. It has 4 columns that identify the date and period of the row’s
data, followed by any number of data columns. The name of each data column must match the name of the object
the data pertains to, such as the name of the appropriate generator. Here is an example of the first few rows of a
columnar timeseries file with data for two generators named Hydro1 and Hydro2:

Table 9: Example Columnar Timeseries File
Year Month Day Period Hydro1 Hydro2
2023 4 1 1 2.0152 11.958
2023 4 1 2 2.3055 12.616
.

Note that the Year, Month, Day, and Period are entered as integer values.

2D Timeseries Files

A 2D timeseries file holds data for a single timeseries in a 2D layout. The file has Year, Month, and Day columns,
followed by one column per period in each day. For example, a file with hourly data will have 27 columns: the
Year, Month, and Day columns followed by 24 period columns:

Table 10: Example 2D Timeseries Data File
Year Month Day 1 2 . . . 24
2023 4 1 1.989 2.0152 . . . 1.958
2023 4 1 2 .015 2.3055 . . . 2.616
. .

The name of each period column must be the period number, from 1 to N.

4.1. Input Data 33

Prescient, Release 2.2.2

dc_branch.csv

This file is where DC branches are defined. Prescient has limited support for DC branches, as indicated by the
small number of columns in this file.

This file is optional; if the file does not exist, no DC branches are added to the model. If the file exists, add a
row for each DC branch in the model. Each row in the file will cause a DC branch dictionary to be added to
['elements']['dc_branch'] in the Egret model.

Table 11: dc_branch.csv Columns
Col-
umn
Name

Description Egret

UID A unique string identi-
fier for the DC branch.

Used as the branch name in Egret. Data for this branch is stored in a
branch dictionary located at ['elements']['dc_branch'][<UID>].

From
Bus

The Bus ID of one end
of the branch

The Bus Name of the bus with the matching Bus ID, as entered in
bus.csv, is stored in the Egret branch dictionary as from_bus.

To Bus The Bus ID of the
other end of the branch

The Bus Name of the bus with the matching Bus ID, as entered in
bus.csv, is stored in the Egret branch dictionary as to_bus.

MW
Load

Power Demand in MW This value is repeated 3 times in the Egret dc_branch dic-
tionary, as rating_short_term, rating_long_term, and
rating_emergency.

initial_status.csv

This file holds the initial state of each generator. It is an optional file; defaults are used if the file is not present.
The file contains a header row and 1 to 3 data rows.

The header row consists of one column per generator, with the column name being the name of the generator, as
specified in the GEN UID column of gen.csv.

The first data row is the status of each generator at the start of the simulation period, where a positive number
indicates how many time periods the generator has been running, and a negative number indicates how many
time periods since the generator was shut down. The first row must contain a value for every generator.

The second data row is the power output of each generator in the time period just before the start of the simulation.
This row can be left blank for all generators, or should be populated for all generators.

The third data row is the reactive power of the generator in the time period just before the start of the simulation.
This row can be left blank, or should be populated for all generators. If the second row was left blank, then the
third row must also be left blank. In other words, the third row can hold data only if the second row also holds
data.

4.1.2 Overview of Input Data

Data is read into Prescient from a collection of CSV files in a format similar to that used by RTS-GMLC. See The CSV
Input File Format for details. The data in CSV input files includes the definition of the system under study including
system elements such as generators and buses, as well as timeseries data such as variable loads and renewable generator
outputs.

Timeseries data in CSV files often covers a larger time period than is included in the study. The dates provided to
Prescient as configuration parameters are used to trim down the data read from input files.

Internally, Prescient stores data in the Egret format.

34 Chapter 4. Reference

https://github.com/GridMod/RTS-GMLC/blob/master/RTS_Data/SourceData/README.md
https://github.com/grid-parity-exchange/Egret

Prescient, Release 2.2.2

4.2 Python Classes and Functions

4.2. Python Classes and Functions 35

Prescient, Release 2.2.2

36 Chapter 4. Reference

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

37

	Using Prescient
	Installation
	Install python
	Install a linear solver
	Install Using Pip
	Install From Source
	Get Prescient source code
	Install Python Dependencies
	Install Egret
	Install the Prescient python package
	Verify your installation

	Running Prescient
	Launch with runner.py
	Launch with the prescient.simulator module
	Running Prescient from python code

	Configuration Options
	Overview
	Option Data Types
	List of Configuration Options

	Input Data
	Custom Data Providers

	Results and Statistics Output
	Customizing Prescient with Plugins

	Modeling Concepts
	The Prescient Simulation Cycle
	The RUC Cycle
	The SCED Cycle

	Time Series Data Streams
	Real-Time Data (Actuals)
	Forecasts
	Forecast Smoothing
	Real-Time Forecast Adjustments

	Reserves and Ancillary Services
	Energy Markets and Pricing

	Examples and Tutorials
	Reference
	Input Data
	The CSV Input File Format
	bus.csv
	Additional Bus Values
	Bus Loads
	Shunts
	Areas

	branch.csv
	Additional Branch Values
	Lines and Transformers

	gen.csv
	Additional Generator Values
	Generator Types
	Fuel Curves
	Startup Curves

	reserves.csv
	Reserve Requirement Magnitudes
	Applicability to RUCs and SCEDs

	simulation_objects.csv
	Date_To Details
	Look_Ahead_Resolution Details
	Reserve_Products Details

	timeseries_pointers.csv
	Timeseries File Formats
	Columnar Timeseries Files
	2D Timeseries Files

	dc_branch.csv
	initial_status.csv

	Overview of Input Data

	Python Classes and Functions

	Indices and tables

